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Analytic solutions to a family of Lotka–Volterra related
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An initial formal analysis of the analytic solution (C.M. Evans and G.L. Findley, J. Math.
Chem. 25 (1999) 105–110) to the Lotka–Volterra (LV) dynamical system is presented.
A family of first-order autonomous ordinary differential equations related to the LV sys-
tem is derived, and the analytic solutions to these systems are given. Invariants for the
latter systems are introduced, and a simple transformation which allows these systems to be
reduced to Hamiltonian form is provided.

1. Introduction

The Lotka–Volterra (LV) problem, originally introduced in 1920 by Lotka [8] as
a model for undamped oscillating chemical reactions, and later applied by Volterra [18]
to predator–prey interactions, consists of the following pair of first-order autonomous
ordinary differential equations:

ẋ1 = ax1 − bx1x2,
(1)

ẋ2 =−cx2 + bx1x2,

where x1(t) and x2(t) are real functions of time, ẋi = dxi/dt, and a, b, c are positive
real constants. Since that time, the LV model has been applied to problems in popula-
tion biology (see, for example, [16]), chemical kinetics (see, for example, [13]), neural
networks (see, for example, [12]) and epidemiology [15], and has become a classic
example for nonlinear dynamical systems [11,17]. In the 1960s, Kerner [6] showed
that the dynamical invariant, known since the original publication by Lotka [8] and
having the form

Λ = bx1 + bx2 − c lnx1 − a lnx2, (2)

could reduce equations (1), by means of a logarithmic transformation, to a Hamiltonian
system. This initial discovery has been expanded by Kerner [6,7] and Plank [14] to
multi-dimensional Lotka–Volterra equations, and Dutt [3] has analyzed the Hamiltonian
form of equation (2) using Hamiltonian–Jacobi theory.
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Recently, equations (1) were shown [4] to have the solution

x1 =
1
b

(aαw + ẇ),
(3)

x2 =
1
b

(aw − ẇ),

where aα = c and w is given by the solution to

ẅ − ẇ2 − a(α− 1)(w − 1)ẇ + a2αw(w − 1) = 0. (4)

With the use of equation (2), equation (4) can be written as

ẅ − a(1− α)ẇ − a2αw − k2
[

1
b

(aαw + ẇ)

]1−α
e(α+1)w = 0, (5)

where k2 = −b2 e−Λ/a. In [4] we showed that the formal analytic solution to equa-
tion (5) is

t− t0 =

∫ w [
aα
(
eρ − w′

)]−1
dw′, (6)

where eρ solves

ba(α+ 1)w′ − bαa eρ + k2
(
αa

b

)−α
e(α+1)w′ e−αρ = 0. (7)

Equation (6) represents a complete reduction of the LV problem to an integral
quadrature which, however, is not reducible to elementary functions. The purpose of
the present paper is to begin an exploration of this quadrature.

In section 2, we provide an initial analysis of equation (5) (and, therefore, of
equation (6)) by means of a power series expansion of the exponential e(α+1)w, for
small integer values of α (α = 1, 2, 3). Moreover, for the case α = 1, the relationship
of the solutions provided by equation (6) to the family of elliptic functions will be
explored. In section 3, an inverse transformation of equations (3), along with the
solutions to equation (5) provided in section 2, is used to develop a family of LV related
first-order autonomous ordinary differential equations, and the dynamical invariant for
each of these systems is derived. Finally, a simple transformation of these invariants
which permits each system to be placed into Hamiltonian form is presented.

2. Power series analysis

Our analysis begins by expanding the exponential term in equation (5) in a power
series to give

ẅ − a(1− α)ẇ − a2αw − k2
[

1
b

(aαw + ẇ)

]1−α ∞∑
m=0

1
m!

(α+ 1)mwm = 0. (8)
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Figure 1. Phase-plane plot of equations (3) obtained by a fourth-order Runge–Kutta solution to equa-
tion (8) for n = 2 (– – –), n = 3 (· · · · ·), n = 4 (- · - · -) and n = ∞ (—–) when a = c = 1.00
and b = 1.30. Initial data for these trajectories are x1(t = 0) = 0.7000 and x2(t = 0) = 0.5556. The
phase-plane trajectory for n = 1 is not shown since the trajectory is exponential for the initial conditions

chosen.

Truncation of the power series in equation (8) gives approximate solutions to the LV
problem (cf. figure 1). As will be shown below, the truncation of equation (8) leads
to a family of differential equations, each seemingly more complex than the original
LV problem, which can be solved in terms of known functions. For finite integer n,
equation (8) can be approximated as

ẅ − a(1− α)ẇ − a2αw − k2
[

1
b

(aαw + ẇ)

]1−α n∑
m=0

1
m!

(α+ 1)mwm = 0, (9)

which has the solution

t− t0 =

∫ w [
aα(ρ− w′)

]−1
dw′, (10)

where ρ is given by the solution to

(n+ 1)!

[
−baαρα+1 + ba(α+ 1)w′ρα + k2

(
b

aα

)α n+1∑
m=0

1
m!

(α+ 1)mw′m
]

= 0. (11)
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When α is an integer, equation (11) reduces to an α+ 1 degree polynomial which can
be solved in terms of radicals for α 6 3 with the aid of a symbolic processor [9].

For α = 1, the solution to equation (11) is

ρ = w′ ± 1
a

[
a2w′2 + k2

n+1∑
m=0

2m

m!
w′m

]1/2

,

which, when substituted into equation (10), gives the solution

t− t0 = ±
∫ w

[
a2w′2 + k2

n+1∑
m=0

2m

m!
w′m

]−1/2

dw′. (12)

With the use of a symbolic processor [9,10], equation (12) can be integrated in terms
of known functions for n 6 3; these solutions are given in table 1. The solutions for
n = 0 and n = 1 are exponential, although the solution for n = 1 can become periodic
when a2 < 2k2. When n = 2 or n = 3, the solutions are elliptic functions of the first
kind [2].

When α = 2, the solution of equation (11) leads to three values for ρ which can
then be substituted into equation (10) to yield the analytic solutions

t− t0 =

∫ w[1
2
p

1/3
2 + 2a2w′2p−1/3

2 − aw′
]−1

dw′

and

t− t0 =

∫ w[
−1

4

(
1± i
√

3
)
p

1/3
2 − a2(1∓ i

√
3
)
w′2p−1/3

2 − aw′
]−1

dw′,

where p2 is defined as

p2 = 8a3w′3 + 4k2b
n+1∑
m=0

3m

m!
w′m

+ 4

[
bk2

n+1∑
m=0

3m

m!
w′m

(
4a3w′3 +

3m

m!
bk2w′m

)]1/2

.

Substituting the four solutions of equation (11) when α = 3 into equation (10) gives
the analytic solutions

t− t0 =

∫ w[
−2aw′ ± 12a3w′3

(
3b2k2Sp

−1/3
3 − p1/3

3 − 6a2w′2
)−1/2

+

√
6

6

[(
3b2k2Sp

−1/3
3 − p1/3

3 − 6a2w′2
)1/2

±
(
3b2k2Sp

−1/3
3 − p1/3

3 − 12a2w′2
)]]−1

dw′
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Table 1
Analytic solutions to equation (12) of text for α = 1 and n 6 3.

n Solution

0 w(t) = 1
2a e±a(t−t0) + k2

2a2 (k2 − a) e∓a(t−t0) − k2

a2

1 w(t) = 1
2λ e±λ(t−t0) + k2

2λ2 (k2 − λ) e∓λ(t−t0) − k2

λ2 ,

where λ =
√
a2 + 2k2

2 ±
√

3
3 k
√
β1 − β3(t− t0) = F

(
sin−1

(
w−β3
β2−β3

)1/2
, β2−β3
β1−β3

)
,

where F is an elliptic function of the first kinda and

β1 = − 1
4
a2+2k2

k2 − 1
8 (1 + i

√
3)k−2p

1/3
2 − 1

8 (1− i
√

3)k−2(a4 + 4a2k2 − 4k4)p−1/3
2 ,

β2 = − 1
4
a2+2k2

k2 − 1
8 (1− i

√
3)k−2p

1/3
2 − 1

8 (1 + i
√

3)k−2(a4 + 4a2k2 − 4k4)p−1/3
2 ,

β3 = − 1
4
a2+2k2

k2 − 1
4k
−2p

1/3
2 − 1

4k
−2(a4 + 4a2k2 − 4k4)p−1/3

2 ,

with p2 defined as

p2 = −a6 − 6a4k2 − 8k6 + 4
√

3a2k2(5a2 − 4k2) + k3(3a6 + 8k3)

3
√

6
2 k[(β2 − β4)(β1 − β3)]1/2(t− t0) = F

(
sin−1

(
(β2−β4)(w−β1)
(β1−β4)(w−β2)

)1/2
, (β1−β4)(β2−β3)

(β1−β3)(β2−β4)

)
,

where

β1 = − 1
2 +

√
2

4 k
−1[p1/3

3 + (a2 + 2k2)2p
−1/3
3 − 2(a2 + k2)]1/2

+
√

2
4 k
−1
[
p

1/3
3 + (a2 + 2k2)2p

−1/3
3 + 4(a2 + k2)

+ 2
√

2k(2k2 − 3a2)[p1/3
3 + (a2 + 2k2)2p

−1/3
3 − 2(a2 + k2)]−1/2

]1/2
,

β2 = − 1
2 +

√
2

4 k
−1[p1/3

3 + (a2 + 2k2)2p
−1/3
3 − 2(a2 + k2)]1/2

−
√

2
4 k
−1
[
p

1/3
3 + (a2 + 2k2)2p

−1/3
3 + 4(a2 + k2)

+ 2
√

2k(2k2 − 3a2)[p1/3
3 + (a2 + 2k2)2p

−1/3
3 − 2(a2 + k2)]−1/2

]1/2
,

β3 = − 1
2 −

√
2

4 k
−1[p1/3

3 + (a2 + 2k2)2p
−1/3
3 − 2(a2 + k2)]1/2

+
√

2
4 k
−1
[
p

1/3
3 + (a2 + 2k2)2p

−1/3
3 + 4(a2 + k2)

+ 2
√

2k(2k2 − 3a2)[p1/3
3 + (a2 + 2k2)2p

−1/3
3 − 2(a2 + k2)]−1/2

]1/2
,

β4 = − 1
2 −

√
2

4 k
−1[p1/3

3 + (a2 + 2k2)2p
−1/3
3 − 2(a2 + k2)]1/2

−
√

2
4 k
−1
[
p

1/3
3 + (a2 + 2k2)2p

−1/3
3 + 4(a2 + k2)

+ 2
√

2k(2k2 − 3a2)[p1/3
3 + (a2 + 2k2)2p

−1/3
3 − 2(a2 + k2)]−1/2

]1/2
,

with p3 defined as

p3 = a6 + 6a4k2 − 24k4a2 − 4k6 + 2k2
√

72a4k4 − 12k8 − 114a6k2 − 18a8

a Abramowitz and Stegun [2].

and

t− t0 =

∫ w[
−2aw′ ± 12a3w′3

(
3b2k2Sp

−1/3
3 − p1/3

3 − 6a2w′2
)−1/2
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−
√

6
6

[(
3b2k2Sp

−1/3
3 − p1/3

3 − 6a2w′2
)1/2

∓
(
3b2k2Sp

−1/3
3 − p1/3

3 − 12a2w′2
)]]−1

dw′,

where

p3 = 3k2b2S
[
−9a2w′2 +

(
3k2b2S + 81a4w′4

)1/2]
and

S =
n+1∑
m=0

4m

m!
w′m.

When α > 3, the polynomial can no longer be solved in terms of radicals.
The solutions of equation (9) represent analytic solutions to a family of first-order

autonomous ordinary differential equations. The next section develops this family of
differential equations from an inverse transformation of equations (3) coupled with the
knowledge of equation (9).

3. Systems of LV related differential equations

In this section, an inverse transformation of equations (3) is used to develop the
family of first-order autonomous ordinary differential equations which are equivalent to
equation (9). Equation (10) represents the analytic solutions to this family of equations
which, as shown in section 2, can be solved in terms of known functions for α = 1
and n 6 3. The phase space trajectories (cf. figure 1) indicate that these systems are
conservative since closed orbits exist. Later in this section, the constant of the motion
for each system will be derived, and a transformation will be presented which allows
this family of equations to be placed into Hamiltonian form.

The inverse transformation of equations (3) is given by

w=
b

a
(α+ 1)−1(x1 + x2),

(13)
ẇ= b(α+ 1)−1(x1 − αx2).

Substituting ẅ obtained from equation (9) into the time derivative of equations (3),
and employing the transformation given by equations (13) yields the following system
of first-order autonomous ordinary differential equations:

ẋ1 = ax1 +
k2

b
x1−α

1

n∑
m=0

1
m!

(
b

a

)m
(x1 + x2)m,

(14)

ẋ2 =−aαx2 −
k2

b
x1−α

1

n∑
m=0

1
m!

(
b

a

)m
(x1 + x2)m.
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Although these equations appear to be more complicated than the original LV system
given in equations (1), equations (14) can be solved analytically in terms of known
functions for α = 1 and n 6 3. When n = 2 and α = 1, equations (14) have
the quadratic coupling term which appears in the LV predator–prey model (i.e., equa-
tions (1)) as well as quadratic terms dependent only on x1 and x2 (which is reminiscent
of the LV competition model (see, for example, [1])).

The phase space trajectories of equations (14) are determined by

dx1

dx2
=

ax1 + k2

b x
1−α
1

∑n
m=0

1
m!

(
b
a

)m
(x1 + x2)m

−aαx2 − k2

b x
1−α
1

∑n
m=0

1
m!

(
b
a

)m
(x1 + x2)m

, (15)

which can be integrated to give

In = axα1 x2 + k2
n+1∑
m=1

1
m!

a1−mbm−2(x1 + x2)m. (16)

That In is an invariant for the system, thereby explaining the closed-orbit nature of
the phase-space trajectories of figure 1, may be shown by induction as follows.

The condition that In be constant is

dIn
dt

= ∂1Inẋ
(n)
1 + ∂2Inẋ

(n)
2 = 0, (17)

where ∂iIn = ∂In/∂xi and ẋ(n)
i = ẋi, for some specific value of n. For n = 0,

equation (17) becomes

dI0

dt
=

(
aαxα−1

1 x2 +
k2

b

)(
ax1 +

k2

b
x1−α

1

)
+

(
axα1 +

k2

b

)(
−aαx2 −

k2

b
x1−α

1

)
,

which simplifies to

dI0

dt
= 0.

When n = j + 1, equations (14) can be written recursively as

ẋ(j+1)
1 = ẋ(j)

1 +
[
(j + 1)!

]−1
k2bja−j−1x1−α

1 (x1 + x2)j+1,
(18)

ẋ(j+1)
2 = ẋ(j)

2 −
[
(j + 1)!

]−1
k2bja−j−1x1−α

1 (x1 + x2)j+1,

and Ij+1 (equation (16)) can be rewritten as

Ij+1 = Ij +
[
(j + 2)!

]−1
k2bja−j−1(x1 + x2)j+2. (19)

Substituting equations (18) and the derivatives of equation (19) into equation (17) and
rearranging gives

dIj+1

dt
=
(
∂1Ij ẋ

(j)
1 + ∂2Ij ẋ

(j)
2

)
+
[
(j + 1)!

]−1
k2(x1 + x2)j+1bja−j−1

×
[
x1−α

1 (∂1Ij − ∂2Ij) +
(
ẋ(j)

1 + ẋ(j)
2

)]
.
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Since ∂1Ijẋ
(j)
1 + ∂2Ijẋ

(j)
2 = 0 by assumption, dIj+1/dt reduces to

dIj+1

dt
=
[
(j+1)!

]−1
k2bja−j−1(x1 +x2)j+1[x1−α

1

(
aαxα−1

1 x2−axα1
)
+(ax1−aαx2)

]
,

which simplifies to dIj+1/dt = 0, thus completing the proof.
The invariant of equation (16) can be written in Hamiltonian form by introducing

(q, p) variables

q = x1 and p = xα−1
1 x2. (20)

This transformation allows the system represented by equations (14) and (16) to be
written as

q̇= aq + k2q1−α
n∑

m=0

1
m!

a−mbm−1(q + pq1−α)m,

(21)

ṗ=−ap− k2[1 + (1− α)pq−α
] n∑
m=0

1
m!

a−mbm−1(q + pq1−α)m,

with the function

Hn = aqp+ k2
n+1∑
m=0

1
m!

a1−mbm−2(q + pq1−α)m (22)

serving as a Hamiltonian, which may be shown simply as follows. The derivatives of
equation (22) with respect to q and p are

∂Hn

∂p
= aq + k2q1−α

n∑
m=0

1
m!

a−mbm−1(q + pq1−α)m,

(23)
∂Hn

∂q
= ap+ k2[1 + (1− α)pq−α

] n∑
m=0

1
m!

a−mbm−1(q + pq1−α)m.
Directly comparing equations (23) with equations (21) gives

∂Hn

∂p
= q̇ and

∂Hn

∂q
= −ṗ,

which are, of course, Hamilton’s equations.

4. Conclusion

In this paper, we have presented an initial analysis of the analytic solution [4]
to the Lotka–Volterra problem and have shown, for the special case of α = 1, the
relationship between this solution and the family of elliptic functions. We also have
provided the form of the integral quadrature (equation (6)) for the cases of α 6 3. The
truncation of the power series used in our analysis of the analytic solution has been
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shown to lead to a new family of LV related differential equations which, for α = 1
and n 6 3, can be solved in terms of known functions. The constant of the motion
for this family was given, and a simple transformation was found to take this invariant
into Hamiltonian form.
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